

Table of Contents

	i
EXECUTIVE SUMMARY in	
1.0 PROJECT INTRODUCTION	l
2.0 PROJECT GOALS	l
3.0 INTEGRATION 1	l
4.0 DAYLIGHTING	l
5.0 GREENHOUSE DESIGN	3
6.0 ENERGY 8	3
7.0 POWER DISTRIBUTION 9)
8.0 LIGHTING DESIGN 1.	1
9.0 SMART BUILDING DESIGN 1.	3
10.0 DESIGN ADAPTABLITY 1	4
11.0 CONCLUSION 1.	5

Supporting Documentation	
References	Α
Plant Matrix	В
Greenhouse Transformation	С
Glazing Study	D
Grow Lighting	E
Greenhouse Shades	F
Greenhouse Optimization	G
Energy Use	Н
Overcurrent Protection Coordination	I
Lighting Power Density	J
Lighting	К
Market	L
Control Narrative	М
Network Diagram	Ν
Levels of SMART building	0

Drawings	
Schedules	E101
Basement & Level 1 Electrical Plan	E102
Level 2 & 3 Electrical Plan	E103
Level 4 & 5 Electrical Plan	E104
Basement & Level 1 Lighting Plan	E105
Level 2 & 3 Lighting Plan	E106
Level 4 & 5 Lighting Plan	E107
Panelboard Schedules	E108
Building Riser Diagrams	E109
Greenhouse Module	E110

Appendix A: References

Codes and Standards:

Wisconsin Codes - Wisconsin Administrative Code (also references ASHRAE 90.1 (2013) and amendments to the NEC (2011))
Miami Codes - Alternate codes to Wisconsin
California Codes - Title-24 (2013) Part 6: Building Energy Efficiency Standards. This code was used to design to the most stringent standards in the country as Growing Power seeks to implement similar Vertical Farms across the nation.
National Codes - NEC (2011), ASHRAE (2010)
Lighting Standards - IES 10th Edition Handbook

Computer Software:

DaySIM - RADIANCE-based daylighting analysis program, daylight harvesting, and shade operation analysis. This was used in conjunction with Microsoft Excel and LBNL Window 7 for greenhouse daylight analysis and glazing optimization. **IES VE** - Building performance modeling software which allowed for integrated building load and energy model analysis with the mechanical team.

Revit Architecture - Building information modeling software used for modeling the site, building architecture, interior design, and lighting design. Basic site sun studies and preliminary daylight analysis were also performed in Revit Architecture. **Revit MEP** – Electrical components and wire sizing tool. All electrical loads, branch circuits, conduit, feeders, panel boards, and transformers were modeled in Revit MEP for official drawing documentation, clash detection, and quantity takeoffs. **Revit ELUM Tools** - Lighting analysis plugin for Revit. Electrical light level calculations within spaces of the building (confirmed with AGI32)

AGI32 - Lighting design, calculation, and visualization (used to confirm Revit ELUM Tools light level calculations)

SKM Power Tools - Electrical engineering optimization tool. Arch flash, ground fault, and overcurrent protection analysis.

References

A. Nabil, J. M. (2005a). Useful Daylight Illuminance: A New Paradigm to Access Daylight in Buildings. Lighting REsearch & Technology, 37(1), 41-59. Retrieved from Lighting REsearch & Technology.

Alera Lighting. (1995). Benefits of Indirect Lighting. Ithica, New York, United States.

Ciolkosz, D. (2014, October). University Greenhouse Operator. (S. E. Architecture, Interviewer)

Company, P. G. (2015). Gas Outages. Retrieved from PG&E Corporation: http://www.pge.com/safety/naturaldisaster/stormsoutagessafety/gasoutage/

Energy, A. f. (2015). PVWatts Calculator. Golden, CO, United States.

Growing Power, Inc. (2014). About. Retrieved from Growing Power inc. : http://www.growingpower.org/about/

International, V. L. (2013). PAR and Plant REsponse Curve. Retrieved from SunMaster Lighting Systems for Greater Yields: http://www.sunmastergrowlamps.com/AboutSunmaster.htm

Mistrick, R., & Chen, L. (2014). The Impact of Snow Cover on Photosensor Control System Performance in a Space with Sidelighting. *Proceedings of the Annual IES Conference*, (pp. 14-16). Pittsburgh, PA.

Shimadzu. (2015). Visible Transmittance and Visible Reflectance. Retrieved from Shimadzu: Excellence in Science, Analytical and Meauring Instruments: http://www.shimadzu.com/an/uv/support/uv/ap/solar.html

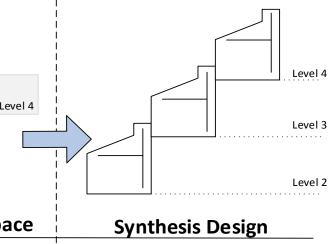
Torres, A. P., & Lopez, R. G. (n.d.). Comercial Greenhouse Production: Measuring Daily Light Integral in a Greenhouse. Retrieved from Department of Horticulture and Landscape Architecture, Purdue University: https://www.extension.purdue.edu/extmedia/HO/HO-238-W.pdf

lar.html ersity: https://www.extension.purdue.edu/extmedia/HO/HO-

Appendix B: Synthesis Plant Matrix

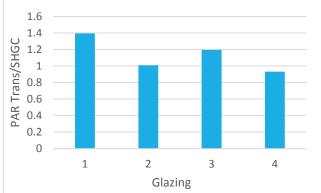
The Plant matrix was created during the initial stages of design. It was used to help the team determine set points for the growing environment in the greenhouse. Research was completed using a variety of resources to compile the matrix, some of these included: on campus greenhouse operators, ASHRAE greenhouse recommendations, agricultural encyclopedias, and online forums for farmers. The plants that are included were listed in the initial program statement for the competition as crops that Growing Power plans to grow in the new Vertical Farm.

	Synthesis Plant Matrix									
	DLI	PAR	Illuminance	Day Length	Temperature	Life Cycle	Plant Height	Spacing in beds	Spacing in Rows	
Crop Type	(Mol/Day/m2)	(µmol/m2/s)	(lux)	(Hours)	(°F)	(days)	(feet)	(inches)	(inches)	
Lettuce	14	150-200	8,100-10,800	24	60-65	30-40	1	12	6	
Basil	14	150-200	8,100-10,800	16	70-80	60-90	2	3	12	
Beat Greens	14	150-200	8,100-10,801	18	65	35-60	1	3	12	
Greens	14	150-200	8,100-10,802	24	65	35-40	2	12	14	
Chives	14	150-200	8,100-10,803	18	65		2	6	6	
Tomatoes	26	300	16,200	16	64-82	60-100	6	18	30	
Cucumbers	20	250	13,500	24	65-70	25	3	12	12	
Strawberries	20	250	13,500	18	65-70	60-90	3	6	6	

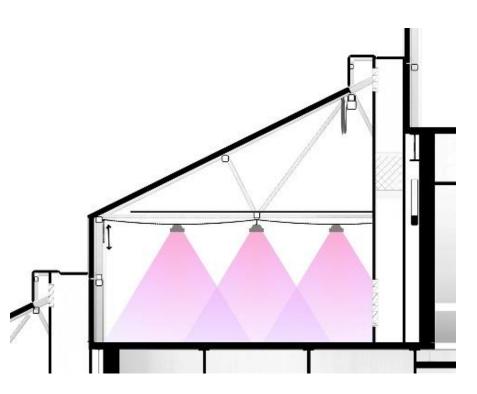

*Life Cycle is an approximate grow cycle for each crop type grown under the conditions recommended in the rest of the plant matrix.

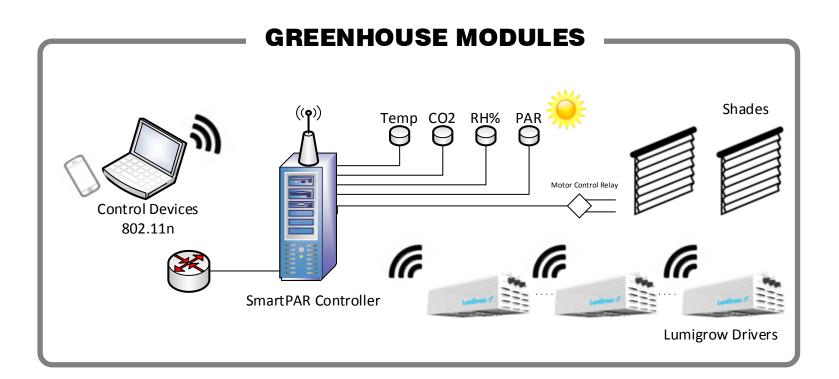
Life Cycle begins after the germination grow period when crops have sprouted.

Appendix C: Greenhouse Transformation


	Level 4 Level 4 Level 3	Level 2 Cavity Removal	Level 2 Eliminate Unused Space	Level 4 Level 3 Level 2 Synthesis Design
Changes that Occured	Original design for the competition provided drawings by TKWA Architects.	Greenhouses were adjusted to remove large gap between each tier.	Transition to a single slope glazing system for smaller, and more adaptable relocation. Overall building width increase to maintain the original area.	Utilize similar single slope design however stagger tiers and coordinate heights by floor in order to decrease shading.
Daylight Delivery	Large glazing area will provide ample daylight to top plants, although the large volume will create shading issues for lower crops.	Similar daylight issues as initial design. The north facing sloped glazing lets in diffuse light. North covered areas in the rear do not receive adequate daylight for sustained plant growth.	depth and more width for higher daylight	Module design creates optimum lighting requirements for specific carbon three plants. Minimal structural shading while taking into account mounting of devices and fixtures.
Ventilation	Open loop system, 100% Outside Air	Open loop system, 100% Outside Air	Open loop system, 100% Outside Air	Closed loop heating and cooling system. Lots of benefits including lower loads and increased controllability
Adaptability	Angle of glazing is not optimized	Snow accumulation between greenhouses will become an issue.	Single slope glazing is optimal for multiple locations in the US. Reduced heating and cooling in all climates due to reduced glazing area.	Cooling system, pest control, and carbon dioxide fertilization is sized for Miami. The exact same module can be used anywhere.
Constructability	Tall structure requires concrete and steel system with precast beams. Not ideal. Snow and Rain gutter between greenhouses will cause problems	Similar issues as initial design. Shared walls between greenhouses are difficult to coordinate and construct.	Simple to construct but large top slant poses logistic issues.	Optimal due to consistent and reasonable sized steel and glazing. Allows trusses to be preassembled and trucked to site.
Heating and Cooling	Height of greenhouse will cause stratification resulting in a non-homogenous growing environment	Height of greenhouse will cause stratification resulting in a non-homogenous growing environment. Less glazing than initial design helps.	Less glazing. Reduced stratification resulting in a more homogenous growing enviornment.	Refer to Mechanical Report
Operation Maintenance	Greenhouse is 20' high. This will require a rotational plant system that may have failures and maintenance issues	Similar issues as initial design. Tall growing area will pose problems.	Easier maintenance issues with regards to farming operations. Angled slope is still difficult to maintain	Easier maintenance issues with regards to farming operations. Angled slope is still difficult to maintain
Cost (construction and operation)	Cost of construction will be high due to large floor to ceiling heights	Cost of construction will be high due to large floor to ceiling heights	Reasonable cost due to repeatability	Cost is decreased due to prefabrication offsite and waste is decreased.

Appendix D: Glazing Study


					Par T	ransmittance	Calculator					
									Multiwall Polyc	arbonate		
Wavelengt	D65 CIE relative	Relative	Single Clear [H	170_3.bsf]			9011(5.8mm) A				0000(5.0) 1: //	-) 0014(0.2)
h	spectral power distribution	PAR	Clasing		Glass 2507 Lay	er: NRM.CPF	9011(5	.8)	9024(9.4), Air(5		9026(5.8), Air(!	5), 9014(9.3)
	ustribution		Glazing Transmittance	Rel PAR*Glaz T	Glazing Transmittance	Rel PAR*Glaz T	Glazing Transmittance	Rel PAR*Glaz T	Glazing Transmittance	Rel PAR*Glaz T	Glazing Transmittance	Rel PAR*Glaz T
300	0.0341	0	0.0009	0	0.0037	0	0.0003	0	0.0013	0.00000117	0	0
-					T	ABLE BREAK 305-	360 nm>					
365	49.3637	0.339	0.0105	0.0035595	0.2445	0.0828855	0.0001	0.0000339	0.0006	0.0000063	0.0005	0.0001695
370	52.0891	0.393	0.0115	0.0045195	0.2491	0.0978963	0	0	0.0003	0.00000345	0.0007	0.0002751
375	51.0323	0.448	0.0138	0.0061824	0.2573	0.1152704	0.0002	0.0000896	0.0004	0.00000552	0.0005	0.000224
380	49.9755	0.493	0.0396	0.0195228	0.2735	0.1348355	0	0	0.0005	0.0000198	0.0004	0.0001972
385	52.3118	0.543	0.1358	0.0737394	0.3061	0.1662123	0.0005	0.0002715	0.0002	0.00002716	0.0007	0.0003801
390	54.6482	0.576	0.2368	0.1363968	0.3605	0.207648	0.0007	0.0004032	0.0004	0.00009472	0.0006	0.0003456
395	68.7015	0.62	0.3191	0.197842	0.4356	0.270072	0.0068	0.004216	0.0006	0.00019146	0.0028	0.001736
400	82.7549	0.649	0.4059	0.2634291	0.515	0.334235	0.0851	0.0552299	0.0171	0.00694089	0.0338	0.0219362
•			•		<ta< td=""><td>BLE BREAK 405-6</td><td>95 nm></td><td></td><td></td><td></td><td></td><td></td></ta<>	BLE BREAK 405-6	95 nm>					
700	71.6091	0.433	0.5734	0.2482822	0.7789	0.3372637	0.8819	0.3818627	0.8859	0.50797506	0.5561	0.2407913
705	72.979	0.382	0.5573	0.2128886	0.7791	0.2976162	0.8903	0.3400946	0.9074	0.50569402	0.5766	0.2202612
710	74.349	0.324	0.5452	0.1766448	0.7793	0.2524932	0.8948	0.2899152	0.9253	0.50447356	0.5917	0.1917108
715	67.9765	0.28	0.5368	0.150304	0.7795	0.21826	0.899	0.25172	0.9325	0.500566	0.6019	0.168532
720	61.604	0.238	0.5321	0.1266398	0.7793	0.1854734	0.9009	0.2144142	0.9263	0.49288423	0.6082	0.1447516
725	65.7448	0.2	0.5247	0.10494	0.7802	0.15604	0.9033	0.18066	0.9175	0.48141225	0.6151	0.12302
730	69.8856	0.159	0.5164	0.0821076	0.7799	0.1240041	0.9031	0.1435929	0.9125	0.471215	0.6233	0.0991047
735	72.4863	0.125	0.5003	0.0625375	0.7805	0.0975625	0.9026	0.112825	0.9182	0.45937546	0.6331	0.0791375
T					<t <="" td=""><td>ABLE BREAK 740-8</td><td>835 nm></td><td></td><td></td><td></td><td></td><td></td></t>	ABLE BREAK 740-8	835 nm>					
830	60.3125	0	0.401	0	0.7931	0	0.9087	0	0.9354	0.3750954	0.6887	0
		SUM =	53.1821	35.1814582	70.1696	40.2983143	72.8265	42.2223841	72.0823	43.19825221	46.0315	25.0394176
			PAR Trans =	0.626327788	PAR Trans =	0.717422056	PAR Trans =	0.751675849	PAR Trans =	0.769049015	PAR Trans =	0.445771263
			Visible Trans=	0.721	Visible Trans=	0.762	Visible Trans=	0.706	Visible Trans=	0.687	Visible Trans=	0.267
			SHGC =	0.449	SHGC =	0.771	SHGC =	0.718	SHGC =	0.734	SHGC =	0.592
				1.394939395		0.930508503		1.046902296		1.047750701		0.752991998
	_										•	



Appendix E: Grow Lighting

	LumiGrow Pro Series Technical Specifications												
Specification	Energy Consumption	Operating Voltage	Operating Frequency	Electrical	Recommended Electrical Service Allowance		Service Typical Running		Typical Running Current		Dimensions	Weight	Operating Temperature
Units	Watts	Volts	Hz	Volts	Amps	Volts	Amps	BTU/hr	inches	lbs	Degrees F		
Pro 325	325 Watts	100-240 AC	50-60	120 240	5 2.5	120 240	2.7 1.3	940	10 W x 11 L x 5.5 H	9	(-4) to (140)		
Pro 325 HV	325 Watts	249-528 AC	50-60	277 480	2 1.2	<mark>277</mark> 480	0.97 0.58	940	10 W x 11 L x 5.5 H	10	(-4) to (140)		
Pro 650	650 Watts	100-240 AC	50-60	120 240	8.5 5	120 240	5.34 2.7	1900	10 W x 17 L x 5.5 H	16	(-4) to (140)		
Pro 650 HV	650 Watts	249-528 AC	50-60	277 480	4 2.4	277 480	1.94 1.6	1900	10 W x 17 L x 5.5 H	21.5	(-4) to (140)		

	Average Hours of Grow Lighting Per Day													
Greenhouse	Number of Fixtures	Target DLI	Jan	Februar y	March	April	May	June	July	August	Septem ber	October	Novemb er	Decemb er
Level 2	54	14 mol/day	7.88	7.31	3.18	1.54	0.77	0.33	0.15	0.44	1.29	4.29	7.49	10.86
Level 3	54	20 mol/day	14.28	12.55	6.95	5.03	2.64	2.32	1.03	1.63	3.53	8.62	13.64	17.84
Level 4	54	26 mol/day	19.82	16.28	10.18	9.3	5.65	4.64	2.9	3.58	6.4	12.28	18.75	22
Level 5	90	14 mol/day	7.88	7.31	3.18	1.54	0.77	0.33	0.15	0.44	1.29	4.29	7.49	10.86

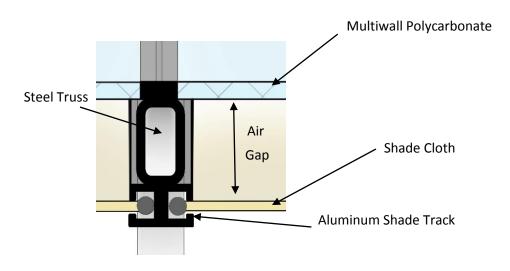
SmartPAR – Control protocol for LumiGrow fixtures. Used to program light recipes specific to certain grow cycles and crops as well as general photoperiod control.

Smart PAR is tied into the Li-COR Quantum PAR sensor and will turn on and off based off the data logging device.

Controlled via wireless signal from the buildings local wireless access point.

Mounting Details

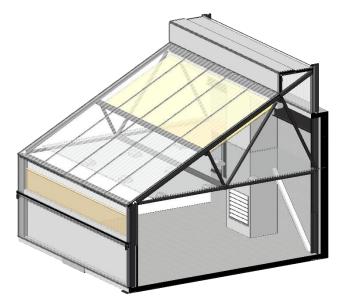
- Fixtures are mounted at 7' from the floor
- Adjustable metal chain controls height
- The closer the fixtures are to the growing surface, the more intense the PAR values
- Chain attaches to three horizontal structural members spanning between trusses (E-W direction)


Measuring PAR										
Equipment	Use	Description								
LI-190 Quantum Sensor	PAR Sensor	Continuously measures light in the PAR spectrum - 1 per module.								
LI-1400 Datalogger	DLI Calculator	Predicts DLI throughout the day. Multiple PAR sensors are linked.								

Appendix F: Greenhouse Shade System

					Shad	e Cloth Proper	ties by Gr	eenhou	se						
Greenhouse	Target DLI	Shade Manufacturer	Model	System	Material Composition	Pattern	Flame Retardant	Weight	Thickness	Width of strips	Shading Level in Direct PAR	Shading Level in Diffused PAR	UV Light Transmission	K Value	Image
Level 2	14 mol/day	Ludvig Svensson	TEMPA 7965 R FR AG	Track	65% Polyolefin 35% Aluminum	3 Aluminum 1 Diffuse Trans	Yes	190 g/m^2	0.95 mm	4.6 mm	79%	81%	15%	3.3 W/m^2 K	
	1	[71% Polyolefin	3 Aluminum	1	104		4.6		Γ			
Level 3	20 mol/day	Ludvig Svensson	TEMPA 7265 D R A W	Track	29% Aluminum	1 Diffuse Trans	No	194 g/m^2	0.85 mm	4.6 mm	82%	75%	23%	3.3 W/m^2 K	
Level 4	26 mol/day	Ludvig Svensson	TEMPA 6360 FR	Track	14% Polyolefin 51% Aluminum	2 Aluminum 1 Diffuse Trans	Yes	121 g/m^2	0.6 mm	4 mm	63%	66%	25%	4.1 W/m^2 K	
	1			<u> </u>	10% Polyester 25% Modacryl	1 Aluminum 1 Diffuse Trans		<u> </u>	1	<u> </u>	I	I			
Level 5	14 mol/day	Ludvig Svensson	TEMPA 7965 R FR AG	Track	65% Polyolefin 35% Aluminum	3 Aluminum 1 Transparent	Yes	190 g/m^2	0.95 mm	4.6 mm	79%	81%	15%	3.3 W/m^2 K	Same as Level 2

	Average Hours of Shading Per Day													
		Tanal Dil		F (1) (1)	N dia sala	A'I	N 4 -			A	Carlandar			
Greenhouse	Shade Cloth	Target DLI	January	February	March	April	May	June	July	August	September	October	November	December
Level 2	TEMPA 7965 R FR AG	14 mol/day	4.36	7.84	13.62	14.52	18.19	19.02	21	20.35	17.4	11.89	5.5	1.8
Level 3	TEMPA 7265 D R A W	20 mol/day	0.16	2.42	7.58	10.58	12.26	17.09	16.91	15.06	9.24	4.68	0.69	0
Level 4	TEMPA 6360 FR	26 mol/day	0	0.15	2.85	8.71	9.5	16.29	14.93	10.93	3.03	0.62	0	0
Level 5	TEMPA 7965 R FR AG	14 mol/day	4.36	7.84	13.62	14.52	18.19	19.02	21	20.35	17.4	11.89	5.5	1.8

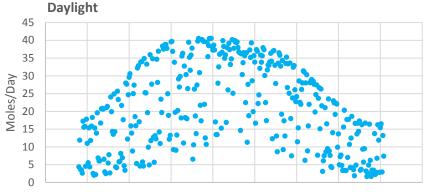

Sloped Shade – The section to the left describes the track mounted shade system. The section is taken through one of the trusses on either side of the module to show how the shades come together creating an air tight seal. The aluminum shade track is mounted on the underside of the steel truss and runs the length of the truss. An air gap is created between the taught shade cloth and the polycarbonate glazing across the entire module. This is beneficial for heat retention and greenhouse cooling, insulating the greenhouse in both scenarios.

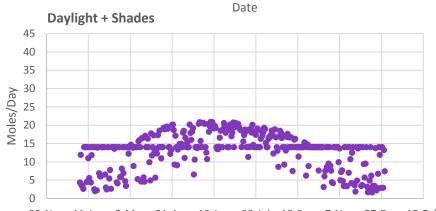
The shade system will deploy from the rear of the greenhouse to eliminate shading while rolled up.

Vertical Shade - The front shade will use a similar track system to the sloped shade, however the track will be mounted to the steel column and vertical mullion on either end of the module.

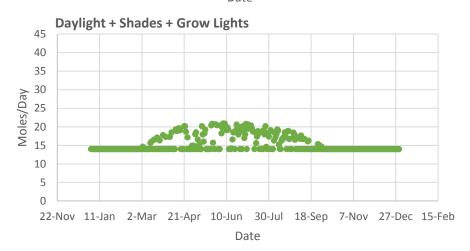
The vertical shade will deploy from the bottom up to eliminate shading while not in use. Both the sloped shade and vertical shade have an aluminum housing with a roller and motor attached.

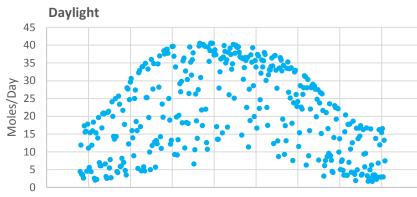
Shade Motor – (2) Ridder – RW45 motors will be used per greenhouse to move the shade system. Each motor can handle the loads of the 6 module's shades, one for the vertical and one for the slope.

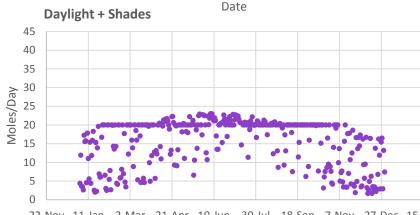


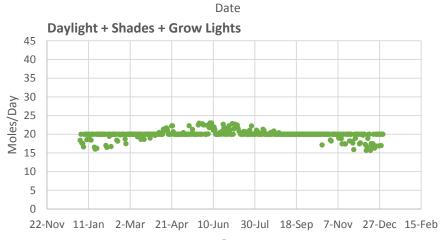

Appendix G: Greenhouse Optimization

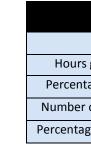
The graphs below plot the DLI measured each day over the course of one year. The effect of shades and grow lights help bring the growing environment to their respective optimal conditions.

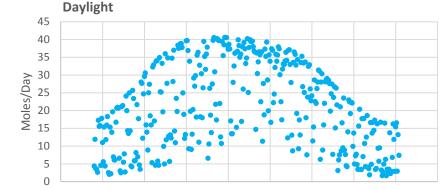

Level 2 & 5 Greenhouse Annual Performance Data									
Target DLI	14 mol/day								
Hours grow lights are in operation	1379 Hours/Year								
Percentage of the year grow lights on	15.7% of the Year								
Number of Days that meet exact target	244 / 365								
Percentage of the year that meets target	67%								

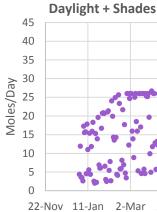

22-Nov 11-Jan 2-Mar 21-Apr 10-Jun 30-Jul 18-Sep 7-Nov 27-Dec 15-Feb

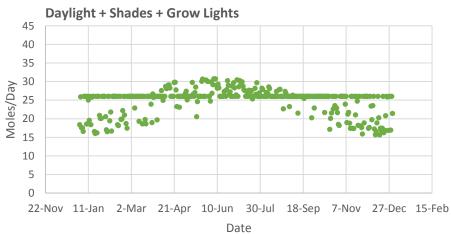

22-Nov 11-Jan 2-Mar 21-Apr 10-Jun 30-Jul 18-Sep 7-Nov 27-Dec 15-Feb Date

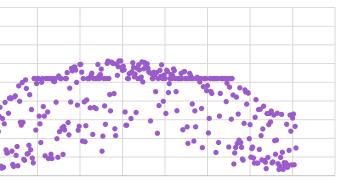

Level 3 Greenhouse Annual Performance Data										
Target DLI	20 mol/day									
Hours grow lights are in operation	2725 Hours/Year									
Percentage of the year grow lights on	31.1% of the Year									
Number of Days that meet exact target	248 / 365									
Percentage of the year that meets target	68%									




22-Nov 11-Jan 2-Mar 21-Apr 10-Jun 30-Jul 18-Sep 7-Nov 27-Dec 15-Feb

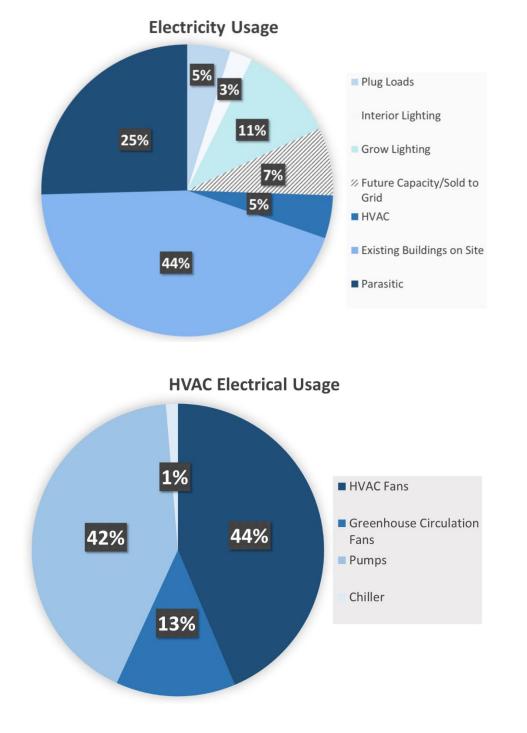

22-Nov 11-Jan 2-Mar 21-Apr 10-Jun 30-Jul 18-Sep 7-Nov 27-Dec 15-Feb

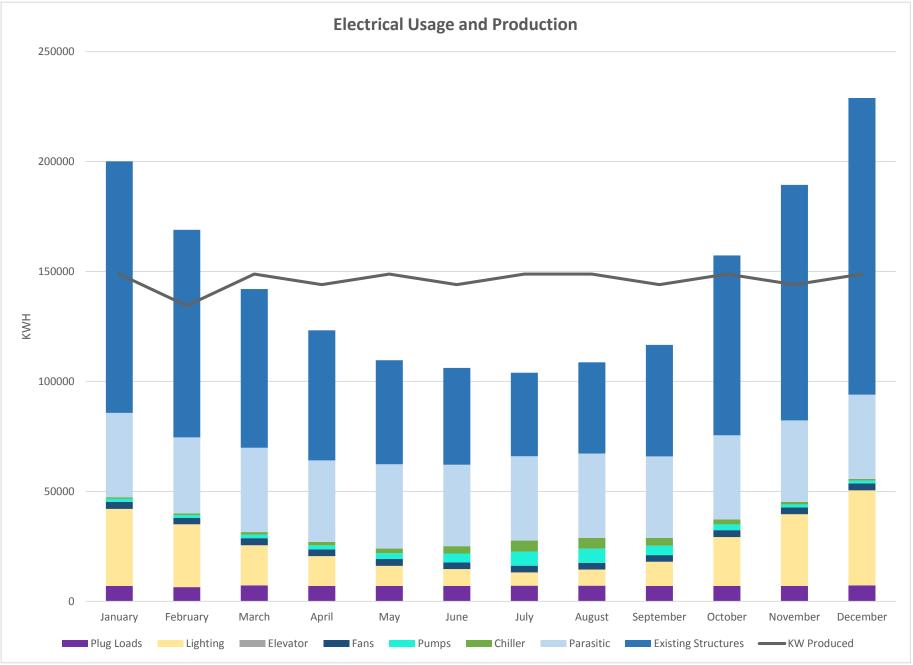




Level 4 Greenhouse Annual Performance Data										
Target DLI	26 mol/day									
grow lights are in operation	3998 Hours/Year									
age of the year grow lights on	45.6% of the year									
of Days that meet exact target	194 / 365									
ge of the year that meets target	53%									

22-Nov 11-Jan 2-Mar 21-Apr 10-Jun 30-Jul 18-Sep 7-Nov 27-Dec 15-Feb Date

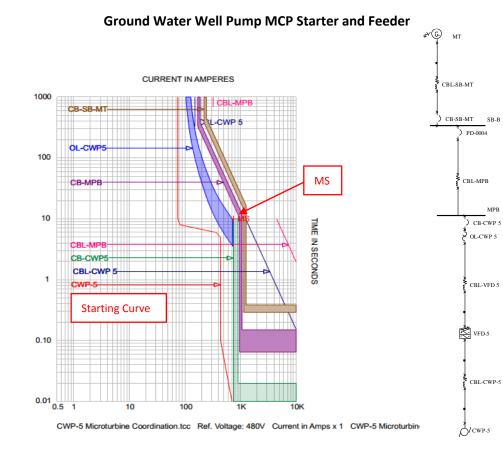

22-Nov 11-Jan 2-Mar 21-Apr 10-Jun 30-Jul 18-Sep 7-Nov 27-Dec 15-Feb Date


Appendix H: Energy Usage

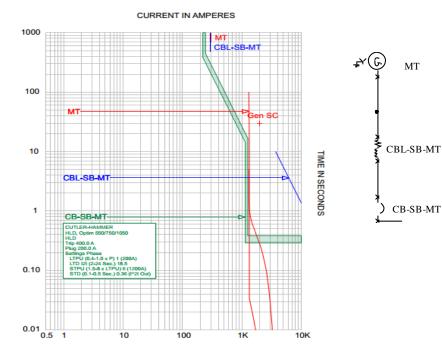
The electrical usage on the Growing Power site is **1,774,000 KWH** from the microturbine each year. Growing Power will use **1,640,940 KWH** each year on the entire Milwaukee site. This usage includes an estimate that was made by the Synthesis team for the usage of Growing Power's existing facilities which include their four large greenhouses and head house. This means that as a whole Growing Power will be producing more power than it uses, making the building **108% Net Zero**.

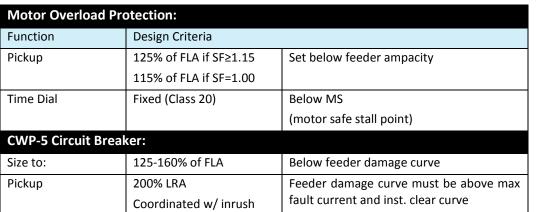
The Graphs below detail the energy usage for the Growing Power site. The Electricity Usage and HVAC Usage pie charts on the left side of the page detail the usage over an entire typical year. The bar graph directly below illustrates the electrical usage per month by category. There is also a gray line that fluctuates just below 150,000 KWH each month. This line indicated the amount of power produced on site.

When the bar graphs are below that line, Growing Power will be producing more power than it uses. When the bar graph exceeds the production line, it indicated that Growing Power will be buying energy from the grid in these months. Due to the nature of the Vertical Farm and the heavy reliance on grow lighting in the winter time, the graph looks much different than traditional buildings.



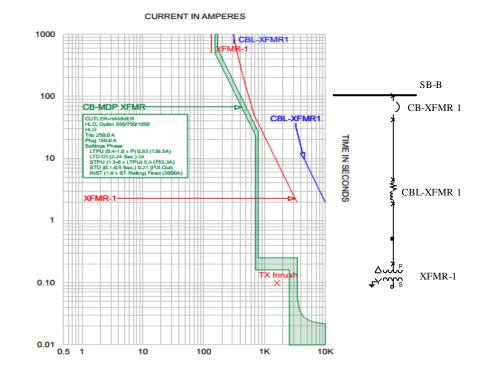
Appendix I: Overcurrent Protective Device Coordination


MPB



Over current protection of key components and loads of the electrical system...

Microturbine (MT) Molded Case Circuit Breaker and Feeder



Microturbine CB Feeder Coordination.tcc Ref. Voltage: 480V Current in Ar

Microturbine Main Switchboard Circuit Breaker:							
Function	Function Design Criteria						
Long Time Pickup	125% of FLA	Set below feeder ampacity	Long Tim				
LTD, STPU & STD	Minimum	Set to intersect with MT decrement curve					
I ² T	Out	The breaker may never trip if set to I ² T in	LTD, STPU				
INST	Above MT decrement curve	Below cable damage curve					

ormei nctior ne Pic PU & INST

Transformer Circuit Breaker and Feeder

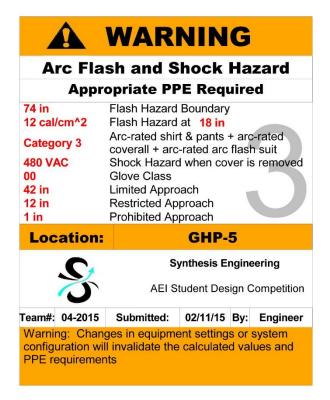
er Circuit Breaker:											
on		Design Criteria									
ickup	100-125% FLA	Below transformer damage curve									
		Below cable ampacity									
STD	Set to coordinate downstream	Set below transformer damage curve									
	200% of inrush	Below cable damage curve									
		Cable damage curve must be above the maximum fault current at the CB total clear curve									

	Arc Flash Analysis														
Bus Name	Bus kV	Bus Bolted Fault	Bus Arcing Fault (kA)	Prot. Dev. Bolted Fault (kA)	Prot. Dev. Arcing Fault (kA)	Trip/Delay Time (sec.)	Breaker Opening Time/Tol (sec.)	Ground	Equip. Type	Gap (mm)	Arc Flash Boundary (in)	Working (in)	PPE Level	Label #	
DP-1	0.208	2.78	1.77	2.78	1.77	0.14	0	Ν	PNL	25	4	18	CAT 0	#0005	
DP-2	0.208	2.78	1.77	2.78	1.77	0.14	0	Ν	PNL	25	4	18	CAT 0	#0005	
DP-3	0.208	2.78	1.77	2.78	1.77	0.14	0	Ν	PNL	25	4	18	CAT 0	#0005	
DP-4	0.208	2.78	1.77	2.78	1.77	0.14	0	Ν	PNL	25	4	18	CAT 0	#0005	
DP-B	0.208	172.91	172.91	171.69	171.69	0.15	0	Ν	PNL	25	19	18	CAT 1	#0005	
GHP-2	0.48	5.64	3.42	1.99	1.21	2	0	Y	PNL	25	74	18	CAT 3	#0006	
GHP-3	0.48	5.64	3.42	1.99	1.21	2	0	Y	PNL	25	74	18	CAT 3	#0006	
GHP-4	0.48	5.64	3.42	1.99	1.21	2	0	Y	PNL	25	74	18	CAT 3	#0006	
GHP-5	0.48	5.64	3.42	1.99	1.21	2	0	Y	PNL	25	74	18	CAT 3	#0006	
MDP	0.208	10.36	4.46	8.8	3.79	0.01	0	Ν	PNL	25	6	18	CAT 0	#0010	
MP-B	0.48	5.57	3.98	3.47	2.48	0.15	0	Y	PNL	25	18	18	CAT 1	#0011	
SB-B	0.48	5.71	3.46	2	1.21	2	0	Y	PNL	25	74	18	CAT 3	#0012	

Arc Flash and Shock Hazard

Appropriate PPE Required

74 in 12 cal/cm^2 Category 3 480 VAC	Flash Hazard Boundary Flash Hazard at 18 in Arc-rated shirt & pants + arc-rated coverall + arc-rated arc flash suit Shock Hazard when cover is removed										
00	Glove Class			orienteved							
42 in	Limited Appro		1								
12 in	Restricted Ap										
1 in	Prohibited Ap	proach									
Location:		SB-B	3								
. C.	Sy	nthesis E	ngin	eering							
5	AEI Student Design Competition										
Геат#: 04-2015	Submitted:	02/11/15	By:	Engineer							
				And the second second second second							


Warning: Changes in equipment settings or system configuration will invalidate the calculated values and PPE requirements

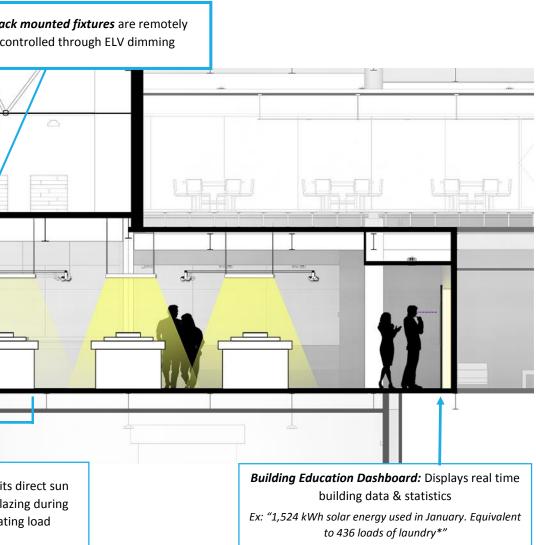
Arc Flash and Shock Hazard Appropriate PPE Required

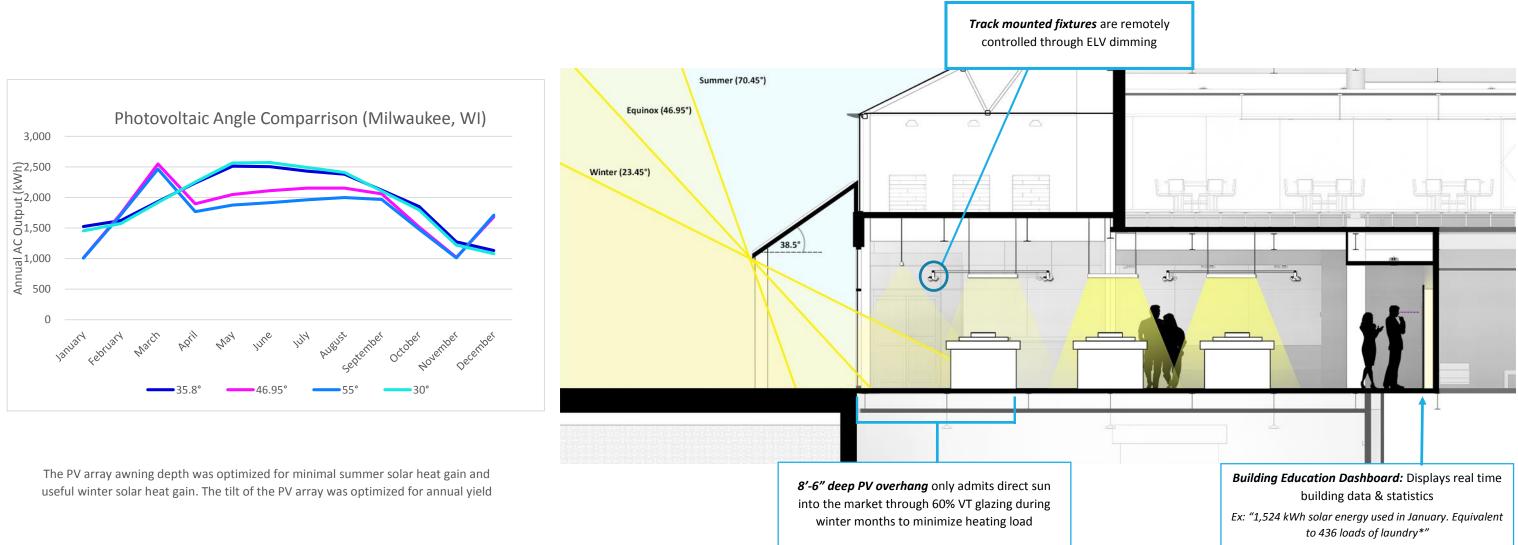
4 in	Flash Hazard Boundary										
0.09 cal/cm^2	Flash Hazard	at 18 in									
Category 0	Nonmelting or Weight >= 4.5		d Fiber with								
208 VAC	Shock Hazard when cover is removed										
00	Glove Class										
42 in	Limited Approach										
Avoid Contact	Restricted Approach										
Avoid Contact	Prohibited Approach										
Avoid Contact	FIOIIIDILEU AP	proach									
Location:	Profilbited Ap	DP-1									
		DP-1	ngineering								
	S	DP-1									

Team#:04-2015Submitted:02/11/15By:EngineerWarning:Changes in equipment settings or system
configuration will invalidate the calculated values and
PPE requirementsPPE

	A WARNING												
Arc Flash and Shock Hazard													
Appropriate PPE Required													
19 inFlash Hazard Boundary1.3 cal/cm^2Flash Hazard at 18 inCategory 1Arc-rated shirt & pants or arc-rated coverall208 VACShock Hazard when cover is removed00Glove Class42 inLimited ApproachAvoid ContactRestricted ApproachAvoid ContactProhibited Approach													
Loc	ation:		DP-B	5									
	Synthesis Engineering AEI Student Design Competitio												
ſeam#:	04-2015	Submitted:	02/11/15	By:	Engineer								
configu		ges in equipme Il invalidate the nts											

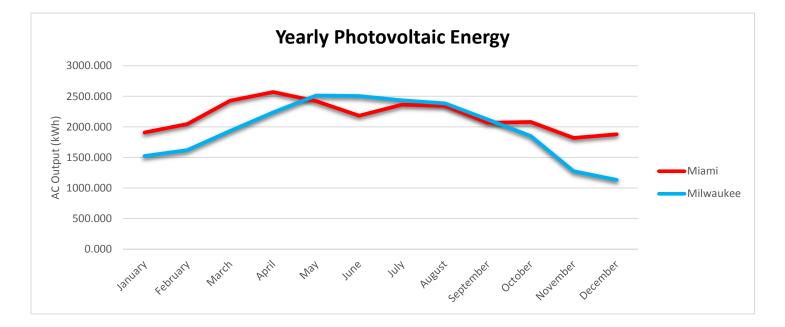
Appendix J: Lighting Power Density


			SYNTHE	SIS LIGHT		RIA				
Space Type	#		Area (ft²)	Ave. Illum	inance (lx)	LF	PD (W/ft²)	Total Po	wer (W)	%Better Than
		Space Type		Goal	Designed	Goal	Designed	Goal	Designed	T-24/ASHRAE
Whole Building (No Greenhouses)			46,628				0.39		18048.2	
Whole Building (Greenhouses)			57,857				1.71		98973.2	
Growing Area 1	1		2375	See PAR	_	10.00	7.39	23750.00	17550	26%
-					_					
Growing Area 2	1	GREENHOUSES	2401	See PAR	-	10.00	7.31	24010.00	17550	27%
Growing Area 3	1		2409	See PAR	-	10.00	7.29	24090.00	17550	27%
Growing Area 4	1		4044	See PAR	-	10.00	6.99	40440.00	28275	30%
Storage 1 - Basement	1		3450	100	130	0.60	0.10	2070.00	352	83%
Storage 2 - Basement	1	INDUSTRIAL	2381	100	130	0.60	0.12	1428.60	288	80%
Processing Area (Low Bay)	1	INDUSTRIAL	1372	300	356	0.90	0.16	1234.80	224	82%
Shipping/Receiving (Low Bay)	1		1154	300	324	0.90	0.25	1038.60	288	72%
Workshop	1		864	100	110	0.90	0.35	777.60	298.96	62%
Mud room	1	VOLUNTEER	174	200	274	0.60	0.28	104.40	49	53%
Showers/Lockers	2	VOLONTLLK	414	200	215	0.75	0.47	621.00	390	37%
Break Area	1		481	100	127	0.73	0.24	351.13	113.5	68%
Market - Cashier				200	230					
Market - Retail	1		3421	500	560	1.20	0.31	4105.20	1053.38	74%
Market - Circulation		RETAIL		200	180					
Vestibule	1	KETAIL	100	20	50	0.60	0.25	60.00	24.5	59%
Restrooms (2)	2		222	200	232	0.60	0.44	266.40	194	27%
Office (2)	2		100	300	350	1.00	0.48	200.00	96	52%
Gathering Area	1		3722	300	356	1.23	0.41	4578.06	1519.44	67%
Break-Out	1		1239	100	254	0.73	0.39	904.47	480	47%
Restrooms	2		195	200	195	0.60	0.50	234.00	194	17%
Classrooms (2) w/ comp.'s	2	CONFERENCE/	1120	300	400	1.20	0.46	2688.00	1039.44	61%
Classroom	1	EDUCATION	441	300	400	1.20	0.70	529.20	309.72	41%
Storage Areas	1	EDUCATION	345	100	132	0.60	0.32	207.00	112.11	46%
Incubator Reception	1		344	300	392	1.10	0.38	378.40	132	65%
Incubator Office (2)	2		117	300	405	1.00	0.41	234.00	96	59%
Demo Kitchen	1		650	400	455	0.99	0.84	643.50	548	15%
Open Office	1		753	300	368	0.75	0.46	564.75	348	38%
Director	1		308	300	312	0.75	0.45	231.00	139.21	40%
Meeting room	1		375	300	365	1.23	0.55	461.25	207	55%
Reception - Desk	1	STAFF/OFFICE	345	300	358	0.73	0.32	251.85	109	57%
Reception - Waiting		,		300	332					
Copy	1		139	300	378	0.60	0.35	83.40	48	42%
Restroom (2)	2		182	200	225	0.60	0.53	218.40	194 100	11%
Lounge	1		298	100	126	0.73	0.37	217.54	109	50%
Stairs Electrical	15 6		234 77	100 100	95 120	0.60	0.08 0.32	2106.00 277.20	295.2 147	86% 47%
Electrical Corridor B	-			100	130 120	0.60 0.60	0.32	277.20 1650.60	280.5	47% 83%
Corridor B Corridor 1	1		2751 1217	100	120	0.60	0.10	730.20	280.5 291	83% 60%
Corridor 2	1	SUPPORT	2733	100	107	0.60	0.24	1639.80	291 414.5	75%
Corridor 3	1		2733	100	108	0.60	0.13	1519.80	414.5 488	68%
Corridor 4	1		1232	100	108	0.60	0.30	739.20	365.5	51%
Elevator Lobby	1		1252	100	200	0.60	0.30	703.20	376	47%
Licvator Lobby	1 1		11/2	150	200	0.00	0.52	703.20	570	+1/0

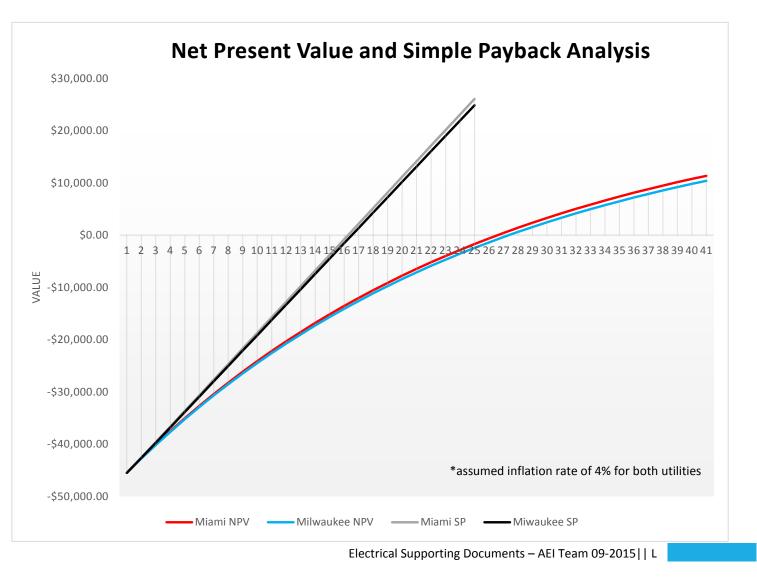

0.39 W/ft²

Whole Building Lighting Power Density

This design beats Titles 24 and ASHRAE by 15%, making it adaptable to almost any location nationwide. It should also be noted that many local jurisdictions require the space by space method, therefore this design would need to be evaluated by the space by space lighting power densities.


Daylight Controlled Zone: All lighting (except track fixtures) within 20' from southern glazing

Month	Solar Radiation (kWh/m²/day)	Irradiance (W/m ²)	DC array Output (kWh)	AC System Output (kWh)	Value (\$)
January	3.089	95.771	1,596.729	1,524.093	182.89
February	3.768	105.493	1,697.065	1,621.080	194.53
March	4.180	129.589	2,024.434	1,933.717	232.05
April	5.213	156.388	2,342.400	2,237.424	268.49
May	5.794	179.617	2,628.759	2,512.382	301.49
June	6.169	185.057	2,621.715	2,504.875	300.58
July	5.910	183.220	2,547.167	2,432.299	291.88
August	5.744	178.072	2,492.371	2,382.633	285.92
September	5.191	155.728	2,218.421	2,120.678	254.48
October	4.233	131.221	1,937.196	1,851.203	222.14
November	2.850	85.486	1,338.252	1,273.260	152.79
December	2.334	72.344	1,192.151	1,132.268	135.87
Total	54.475	1,657.99	24,636.66	23,525.91	\$ 2,823.11


		Miami Annual Solar Er	nergy Usage		
Month	Solar Radiation (kWh/m²/day)	Irradiance (W/m ²)	DC array Output (kWh)	AC System Output(kWh)	Value (\$)
January	4.416	136.906	1992.302	1906.897	209.76
February	5.266	147.461	2137.648	2047.621	225.24
March	5.652	175.202	2536.851	2428.354	267.12
April	6.278	188.330	2681.470	2569.056	282.60
May	5.797	179.720	2530.619	2420.783	266.29
June	5.438	163.131	2283.908	2183.186	240.15
July	5.693	176.492	2470.451	2363.254	259.96
August	5.640	174.841	2447.745	2343.354	257.77
September	5.172	155.148	2162.054	2067.514	227.43
October	4.963	153.859	2173.380	2079.978	228.80
November	4.384	131.511	1902.388	1818.532	200.04
December	4.330	134.235	1964.406	1880.019	206.80
Total	63.029	1,+16.836	27,283.220	26,108.546	\$ 2,871.94

Miami Annual Salar Enor

Initial photovoltaic studies and research showed that, no matter the size, a 15-17 year payback was an adequate assumption for payback in Milwaukee. For this reason, Synthesis designed the PV awning as both a shading feature for the market and a way to advertise the sustainability of Growing Power to the community. Solar radiation was evaluated using PV Watts (typical PV parameters), local weather data, and IES Virtual Environment for analysis. After tilt angle was optimized for both Milwaukee and Miami locations, a simple payback and present value analysis were done in order to calculate the return on investment. Utility rates used were from WE Energies (Milwaukee) and Florida Power & Light (Miami). The initial cost was kept the same at \$2.6 /W DC. The NPV and simple payback studies are shown below. Simple payback stayed within the assumptions, while the net present value does not break even until 26 years.

Growing Power should be aware of the potential payback period for the PV array. Renewable energy and education are both important focuses of the Vertical Farm. Their biggest benefit will be during winter months when grow lighting is being used in the greenhouses. An increase in angle will provide more direct solar irradiance during winter months and therefore more power, however a much lower annual yield and much longer payback. Therefore, Growing Power must optimize its PV array for the maximum annual yield in order to minimize payback and benefit from any rates at which they could sell power back to the utility grid.

Appendix M: Control Narrative

	Control Narrative by Space Type																	
Space Type	Floor	Manual On/Off	Override Dimming	Occupancy	Vacancy	DALI Scene Control	Photosensor Dimming (2 zone)	Photosensor Dimming (3 zone)	Photosensor Shade	DALI Shade	Time Clock Sweep	Elevator RFID Access	Receptacle Relay	Branch Circuit	Spectrum Tuning	GH Shades	PAR Diming	Description
Greenhouses	2-5	\checkmark										\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	SmartPAR control unit will extrapolate DLI for sensors. Shades and grow lighting will activate
Basement General	В	\checkmark		\checkmark								\checkmark	\checkmark	\checkmark				Lights and Receptacles will always be control
Basement Storage	В	\checkmark		\checkmark								\checkmark	\checkmark	\checkmark				Lights and Receptacles will always be control
Processing/Shipping/Receiving	1	\checkmark	\checkmark	\checkmark			\checkmark				\checkmark		\checkmark	\checkmark				Lighting controlled via 20 minute delay occu during business hours (8am-5pm). Receptacl (5pm-8am).
Volunteer Areas	1	\checkmark		\checkmark									\checkmark	\checkmark				Lights and Receptacles will always be control
Market	1	\checkmark	\checkmark			\checkmark	\checkmark				\checkmark		\checkmark	\checkmark				Lights and receptacles will be controlled via t and be controlled via photosensors and over off unless overridden by a manual on/off swi
Gathering/Break-Out	2	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				Lights will function on DALI occupancy (auto allow receptacles to be active during busines minute occupancy control relay (5pm-8am). corresponding dimmed zone for daylight har
Classrooms	3	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				Lighting will be controlled via high sensitivity via DALI bus. Time clock will allow receptacle Receptacles will be switched via 20 minute o will control lighting within corresponding din
Small Offices	3-4	\checkmark	\checkmark	\checkmark		\checkmark	~		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				Lighting will be controlled via high sensitivity allow receptacles to be active during busines minute occupancy control relay (5pm-8am). corresponding dimmed zone for daylight har
Demo Kitchen	3	\checkmark	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark				Lighting will be controlled via high sensitivity active during business hours and will be swit
Open Offices	4	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				Lighting will be controlled via high sensitivity allow receptacles to be active during busines minute occupancy control relay (5pm-8am). corresponding dimmed zone for daylight har
Stairs	All	\checkmark	\checkmark	\checkmark														Lighting controlled via 5 min high sensitivity
Restrooms	All	\checkmark		\checkmark			\checkmark				\checkmark		\checkmark	\checkmark				Lighting controlled via 5 min high sensitivity
Corridors	All	\checkmark		\checkmark				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark				Lighting controlled via 5 min high sensitivity of
Workshop/Storage	1	\checkmark			\checkmark						\checkmark		\checkmark	\checkmark				Lighting controlled via 5 min high sensitivity

for the day based on weather data and quantum PAR vate or be tuned accordingly.

rolled from a 20 min delay occupancy sensor

rolled from a 20 min delay occupancy sensor

cupancy sensor. Time clock will allow receptacles to be active acles will be switched via 20 minute occupancy control relay

rolled from a 20 min high sensitivity occupancy sensor

a time clock. 8:00 am the lights and receptacles will turn on erride dimming. 5:00 pm the lights and receptacles will turn witch.

to on/off) sensors at all times via DALI bus. Time clock will less hours (8am-5pm). Receptacles will be switched via 20 l). Photosensor algorithm will control lighting within larvesting.

ity 20 min vacancy (manual on/ auto off) sensors at all times cles to be active during business hours (8am-5pm). e occupancy control relay (5pm-8am). Photosensor algorithm dimmed zone for daylight harvesting.

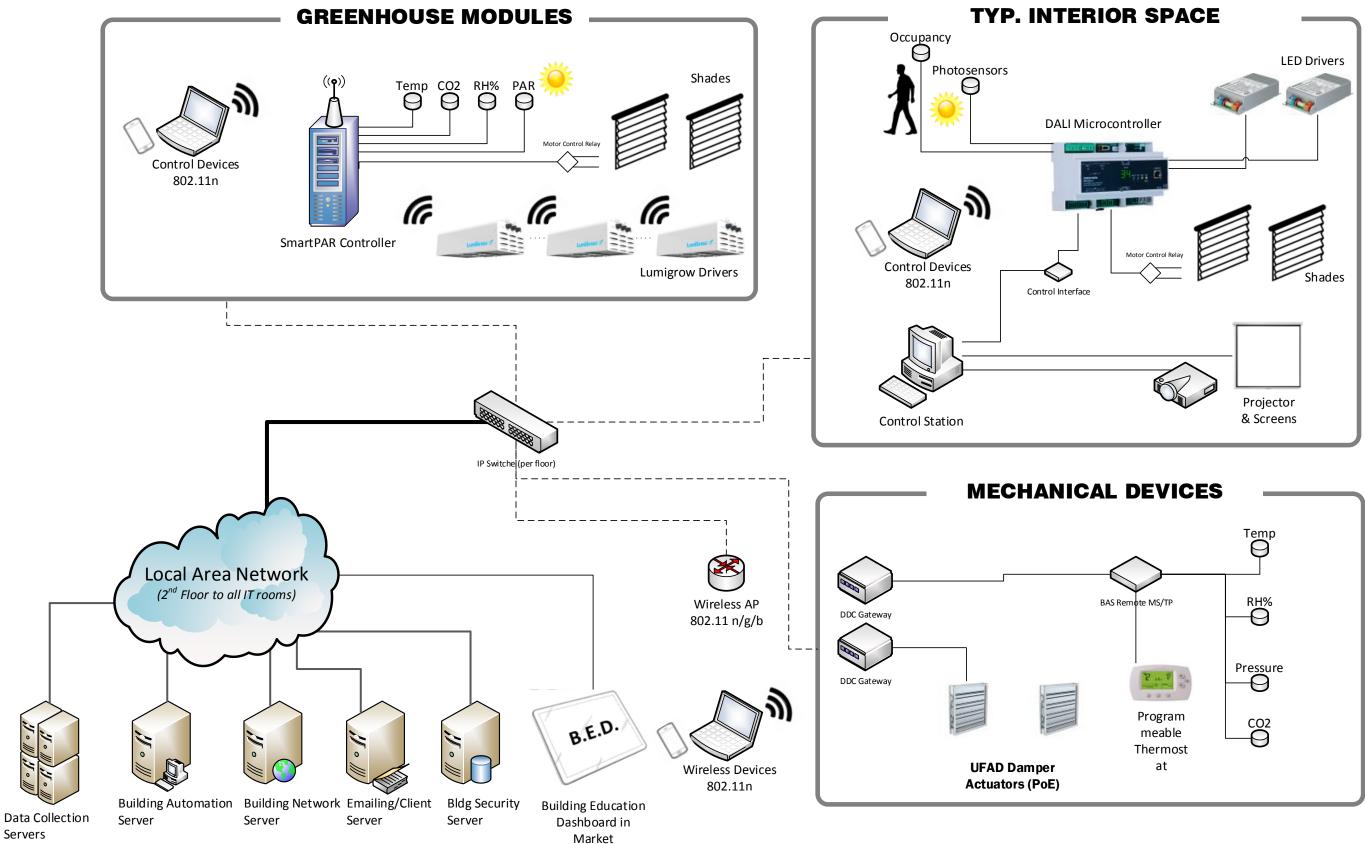
ity 20 min occupancy sensors at all times. Time clock will less hours (8am-5pm). Receptacles will be switched via 20). Photosensor algorithm will control lighting within larvesting.

ity 20 min occupancy sensor at all times. Receptacles will be vitched via time clock to occupancy control after hours.

ity 20 min occupancy sensors at all times. Time clock will less hours (8am-5pm). Receptacles will be switched via 20). Photosensor algorithm will control lighting within larvesting.

y occupancy sensor at all times.

y occupancy sensor at all times.


y occupancy sensor at all times.

ty vacancy sensor at all times.

Electrical Supporting Documents – AEI Team 09-2015 || M

Appendix N: Network Diagram

Appendix O: SMART Building Control

	Levels of SMART Building Integration							
		Plain Vanilla	Level One	Level Two	Level Three	Level Four		
		No Integration	Shared Building Network - and - Building Systems Exchange Data	Converged Network and Building Systems Exchange Data with User Applications	Single, Normalized Database collecting from every system	Meta-level Applications leveraging Normalized Database information for trend analysis, automation, etc		
	System	Stand Alone Systems	Data Exchange Info	Data Exchange Info	Data Exchange Info	Data Exchange Info		
	Greenhouse Shade Control Greenhouse Lighting Control Greenhouse HVAC Control	Systems	Tie with SmartPAR to BAS	Tie with SmartPAR to BAS	All system data captured and normalized for Growing Power goals buil	Primary data exchange through normalized		
	HVAC Controls		Tie with DALI to BAS	Tie to calendar/email				
tems	Lighting Control Shade Control Receptacle Control	Building		Tie with DALI to BAS Tie with DALI to BAS & calendar				
Sys	Fire/Life Safety	systems are stand-alone	Sent to BAS	Sent to BAS		database, override		
ing	Metering	and do not	Sent to BAS	Sent to BAS		automation commands to		
Building Systems	Physical Security	exchange data	Tie to AD	Tie to AD		building systems and user applications possible		
	Elevator		Tie to BAS	Tie to BAS				
	Voice System							
	Videoconference System			Tie to cal				
	Energy Management		Tie to BAS	Tie to BAS				
	Room Scheduling		Tie to occ	Tie to cal				
	AV Control System		Tie to occ	Tie to calendar & email				
	Greenhouse Management		Data exchange from building systems to user applications does not happen at this level	Converge with BAS for	Converge with BAS for			
	Market Management			greenhouse data	greenhouse data Vs food waste in/out			
s	Facilities/Shipping Receiving			exchange	building automatic	Trend analysis tied in to		
ion	IT Network Management	Plain Vanilla building systems do not exchange data with the user applications		TBD in CD		building automation must be discussed with		
User Applications	Calendar Application			Converge with BAS for HVAC optimization	Data collecting for HVAC optimization	Growing Power for more specific goals. This will be		
	Email Application			Converge with BAS for building alerts	TBD in CD	beneficial especially for experimental greenhouse		
	Directory Application			Converge for personal device lighting control		operation.		
	Mass Notification			Converge with BAS for building alerts				

Notes:

BAS = Building Automation System

cal = Calendar Application

AD = Automation Device

Occ = Occupancy sensor Control

TBD in CD = To be discussed with Growing Power in CD phase for optimal data harvesting, user control, and/or building automation

	Simple Definition	n	
Scenario	Analogy	Result	
Level 1	Two people working INDEPENDENTLY in separate rooms	Information in each room	
Level 2	The two people now work TOGETHER in the same room	Each party has influence of	
Level 3	A transcriber is included to collect INFORMATION.	Data is collected	
Level 4	An additional party identifies trends and the two people ADAPT	Work improves with time	

Each level of SMART building integration will require additional programming and applications for controllers and databases by a 3rd party control team. The Synthesis Lighting/Electrical design team recognizes this and has put in place the infrastructure for up to "Level 4" integration. This means that no matter what level Growing Power chooses to implement, higher levels can easily be adopted.

- Level One Information will be shared between building systems though the building automation server
- Example: Occupancy sensor will effect both lighting and HVAC control
- Level Two Information is exchanged between user applications and the building automation system
- Example: The building calendar application will adjust the HVAC system in the gathering space to pre-cool before large events. This will counter the effect of latent load and minimize work done by the system

Growing Power officials get system alerts via email or smartphone application

- Level Three Information will be shared between building systems though the building automation server
- Example: Growing Power has a better understanding of how energy is being used. Ibs of food sold vs lbs of food waste used for energy
- Level Four Normalized data collection is used a means to improve each Growing Power site. Trends are identified by applications and adapted to automatically
- *Example*: The system learns typical occupant behavior

n is shared only within that room

over one another